Scatter and Blurring Compensation in Inhomogeneous Media Using a Postprocessing Method
نویسندگان
چکیده
An efficient postprocessing method to compensate for the scattering and blurring effects in inhomogeneous medium in SPECT is proposed. A two-dimensional point spread function (2D-PSF) was estimated in the image domain to model the combination of these two physical effects. This 2D-PSF in the inhomogeneous medium is fitted with an asymmetric Gaussian function based on Monte Carlo simulation results. An efficient further blurring and deconvolution method was used to restore images from the spatially variant 2D-PSF kernel. The compensation is performed using a computer-simulated NCAT phantom and a flanged Jaszczak experimental phantom. The preliminary results demonstrate an improvement in image quality and quantity accuracy with increased image contrast (25% increase compared to uncompensated image) and decreased error (40% decrease compared to uncompensated image). This method also offers an alternative to compensate for scatter and blurring in a more time efficient manner compared to the popular iterative methods. The execution time for this efficient postprocessing method is only a few minutes, which is within the clinically acceptable range.
منابع مشابه
A postprocessing method for compensation of scatter and collimator blurring in SPECT: a proof-of-concept study.
UNLABELLED Attenuation, scatter, and blurring are 3 major contributors to SPECT image degradation. Image reconstruction without compensation for these degradations results in reduced contrast and reduced quantitative accuracy. In this proof-of-concept study, we present an efficient postprocessing method to compensate for the scatter and blurring effect in SPECT. METHODS A raw image is first r...
متن کاملOptimal Control of Light Propagation Governed by Eikonal Equation within Inhomogeneous Media Using Computational Adjoint Approach
A mathematical model is presented in the present study to control the light propagation in an inhomogeneous media. The method is based on the identification of the optimal materials distribution in the media such that the trajectories of light rays follow the desired path. The problem is formulated as a distributed parameter identification problem and it is solved by a numerical met...
متن کاملA Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers
In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...
متن کاملEvaluation of Full scatter convolution algorithm based Treatment Planning System performance in the presence of inhomogeneities using three-dimensional film dosimetry
Introduction: Inclusion of inhomogeneities such as air-filled cavities in the head and neck treatment fields may result in potential dosimetric disagreement which was caused by electronic disequilibrium. Most of treatments planning systems (TPS) are not able to predict dose distribution of inhomogeneous regions accurately. EBT2 films are used frequently in radiotherapy quality ass...
متن کاملA New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images
Objective(s): In SPECT, the sinogram contains scatter and lack of attenuated counts that degrade the reconstructed image quality and quantity. Many techniques for attenuation and scatter correction have been proposed. An acceptable method of correction is to incorporate effects into an iterative statistical reconstruction. Here, we propose new Maximum Likelihood Expectation Maximiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Biomedical Imaging
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008